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Kapitel 1

Introduction

Be M ⊆ Rn, x ∈ M and {TxM = {x′(0)|c : I 7→ M , c a smooth curve c(0) = x} with I = (−1, 1) and
c′(0) = ∂/∂t|t=0c(t) ∈ Rn. The tangential space TxM ist a k-dimensional vector subspace of Rn. The tangent
bundle is defined by

TM =
⋃

x∈T

TxM =
⋃

x∈M

{x} × TxM

and the natural projection is given by

π : TM 7→ M, v = (x, vx) ∈ {x} × TxM 7→ x ∈ M

π−1(x) = {x} × TxM is a vector bundle over a manifold, the so-called ”bundle projection“(bundle map).

Proposition:

TM is a submanifold of Rn × Rk and π: TM 7→ M is a smooth map.

Proof:

It is

TM =
⋃

x∈M

{x} × TxM ⊆ Rn × Rn

by definition. For x ∈ M and W ⊆ Rn f : W 7→ Rn−k, where 0 ∈ Rn−k is a regular value for f , we receive
M ∩W = f−1(0), because M is a manifold. The result of TxM = df |−1

x (0) with x ∈ W is:

TM ∩ (W × Rn) = (f df)−1(0) = F−1(0)

where F : W × Rn 7→ Rn−k × Rn−k and (x, v) 7→ (f(x), df |x(n)). It remains to show, theta 0 ∈ Rn−k × Rn−k

is a regular value.

1.) df |x: Rn−k 7→ Rn−k is surjective ∀ x ∈ M ∩W

2.) ∂(0,v)|(x,v)df = df |x(v)

(1)+(2) show, that dF |(x,b′) is surjective ∀ x ∈ M ∩W . Then 0 is a regular value for F .

Exercise:

Use the ”local chart definition“ of submanifolds, to prove, that TM ⊆ Rn × Rn is a submanifold.
Be M ⊆ Rn and N ∈ Rn′ submanifolds. Then M×N ⊆ Rn×Rn′ is a submanifold with TM×TN = T (M×N)
and TxM × Tx′N = T(x,x′)M ×N .
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KAPITEL 1. INTRODUCTION

1.1 Quotients

Be PnR := {all 1-dimensional vector spaces in Rn+1} = Sn/{+1,−1} the so-called real projective space, where
Sn is the unitary sphere in n dimensions. This is a topological space, but is it also a submanifold? For n = 1
the projective space is given by P1R = S1/{+1,−1} ' S′.

(homoemorphic projection)

PnC is the complex projective space with PnC = S2n+1/S′, where S′ = {z ∈ C||z| = 1} ⊆ C? subgroup.
S2n+1 = {(z1, z2, . . . , z2n+1)|

∑ |zi|2 = 1} is ⊆ Cn+1.

Example:

For n = 1 , P1C = S3/S′ ≈−→ S2.

1.1.1 Final remark on submanifolds

Lemma:

Let M ⊆ Rn be a k-dimensional submanifold. Let (U1, φ1) and (U2, φ2) be local charts for M . Define the
coordinate change φ21 = φ2◦φ−1

1 : φ1(U1∩U2) 7→ φ2(U1∩U2), where U1∩U2 ⊆ Rk. Then φ21 is a diffeomorphism
of open subets in Rk.

Proof:

φ21 = φ2◦φ−1
1 is a composition of smooth maps and so φ21 is smooth. φ21 = φ1◦φ−1

2 , φ2(U1∩U2) 7→ φ1(U1∩U2)
is a smooth inverse of φ21 and so φ21 is a diffeomorphism.

1.2 Abstract manifolds

Let X be a topological space. The space is called Hausdorff, when ∀ x, y exists Ux = x and Uy = y with
Ux ∩ Uy = ∅, where x 6= y are open subsets of X (separable neughbourhood).

Example:

Rn is a Hausdorff space. X is countable at infinity ⇔ ∃ a countable generating set for the topology on X.
(B1/2(q), q ∈ Qn generate the topology.)
We are concerned about the definition of the smooth manifolds. Be M = (X, A), where X is a topological space,
which is Hausdorff and has a countable basis. A is a smooth structure on X. This means, that A is a maximal
smooth atlas. A is a smooth atlas with the charts (U, φ), where φ is a homeomorphism φ: U

'−→ V ⊆0 RK . If
we have two charts (U1, φ1), (U2, φ2) ∈ A, we receive φ2 ◦ φ−1

1 : φ1(U1 ∩ U2) 7→ φ2(U1 ∩ U2) ⊆0 RK . This is a
smooth diffeomorphism and M is called a k-dimensional smooth manifold (differentiable manifold).

Example:

Submanifolds are smooth manifolds.

Proposition:

Let M ⊆ Rn be a n-dimensional submanifold. Then M is a smooth manifold.
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1.3. SMOOTH FUNCTIONS AND MAPS IN MANIFOLDS

Proof:

M is a subset of Rn and has a subspace topology inherited from Rn. So the open sets U in M are of the form
U = M ∩ Ũ , where Ũ is open in Rn. Then M is a Hausdorff topology space and also has a countable basis for
the topology. By definition of the submanifold M has a smooth atlas with charts taking values in RK (compare
with Lemma in last lecture). ¤

1.2.1 Real projective spaces

PnR = {all 1-dimensional subspaces in Rn+1}. So x ∈ PnR can be described by a n + 1-tupel of numbers,
namely x = (x1 : . . . : xn+1) = (λx1 : . . . : λxn+1) with λ ∈ R \ {0} and (x1, . . . , xn+1) ∈ Rn+1. The xi are
homogeneous coordinates for the line x = {λ(x1, . . . , xn+1)|λ ∈ R}.

Remark:

For the projective space we have PnR = Sn/{+1,−1}(= Rn+1 \{0}/n), (x1, . . . , xn+1) 7→ (x1 : x2 : . . . : xn+1).
PnR with the quotient topology with respect to π is Hausdorff and also has a countable basis (exercise for
definition of quotient topology).
Now let’s look for affine charts for projective space:

Ui = {(x1 : . . . : xi : . . . : xn+1)|xi 6= 0} with i = 1, . . . , n + 1

Ui is an open set in PnR. So we define a chart

φi : Ui 7→ Rn, (x1 : . . . : xi : . . . , xn+1) 7→
(

x1

xi
, . . . ,

x̂i

xi
,
xi+1

xi
, . . . ,

xn+1

xi

)

The inverse chart is given by ψi = φ−1
i : Rn 7→ PnR, (y1, . . . , yn) 7→ (y1 : . . . : yi−1 : 1 : yi : . . . : yn). Therefore

φi is a homoeomorphism. φi are called affine charts. All of them cover the projective space:

PnR =
n+1⋃

i=1

Ui

We now want to compute the coordinate changes for this atlas:

U1 ∩ Uj = {(x1, . . . , xn+1)|xi 6= 0, xj 6= 0} with j < i

Then ist follows, that φi(U1 ∩ Uj) = {(y1, . . . , yj , . . . , yn)|yj 6= 0}. We now have to compute:

φj ◦ φ−1
i (y1, . . . , yn) = φj(y1 : . . . : yi−1 : 1 : yi : . . . : yn) =

(
y1

yj
, . . . ,

ŷj

yj
, . . . ,

yi−1

yj
,

1
yj

, . . . ,
yn

yj

)

This is smooth on that set, because xj 6= 0. So φj ◦ φ−1
i is a diffeomorphism.

1.3 Smooth functions and maps in manifolds

Definition:

Be M a smooth manifold and U ⊆ M an open subset. Furthermore be f : U 7→ R a continuous function. f is
called smooth at x ∈ U , if there exists a chart φ: U 7→ V ⊆ RK with parametrization ψ = φ−1: V 7→ U such
that f ◦ ψ: V 7→ R is smooth.

Remark:

This definition does not depend on the choice of chart in M . In fact, if f ◦ φ−1
1 : V1 7→ R is smooth, than this

implies, that f ◦ φ−1
2 : V2 7→ R near φ2(x), where (U1, φ1) and (U2, φ2) are charts near x ∈ U1 ∩U2. The reason

for this is, that the coordinate change is smooth.

f ◦ ψ2 = (f ◦ ψ1) ◦ (φ1 ◦ ψ2)

f ◦ ψ1 is smooth and φ1 ◦ ψ2 is a smooth coordinate change. So f ◦ ψ2 is smooth.
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KAPITEL 1. INTRODUCTION

Definition:

A continuous function f (∈ C0(U)) is called smooth, if it is smooth at all x ∈ U . C∞(U) is a set (ring) of all
smooth functions.

Lemma:

(Smooth maps in Euclidian spaces)
Be Φ: U 7→ V , where U ⊆0 RK , V ⊆0 RK′

is smooth, if and only if for all functions f ∈ ϕ∞(V ) it is
f ◦ φ ∈ C∞(U).

Proof ”⇒“:

If Φ and f are smooth, than this implies, that f ◦ Φ are smooth (chain rule).

Proof ”⇐“:

Φ: U 7→ V ⊆ RK′
is smooth, if all component functions Φi (where Φ = (Φ1, . . . , ΦK′)) are smooth. Φi = xi ·Φ,

xi: V 7→ R, (x1, . . . , xK′) 7→ xi (xi ∈ C∞(V ))

Definition:

Let Φ: M 7→ N be a continuous map. M , N are smooth manifolds. Than Φ is called smooth if ∀ f ∈ C∞(U)
and all U , where U ⊆0 N open, f ◦ Φ: Φ−1(U) 7→ R is in C∞(Φ−1(U)).

Remark:

With this definition the coordinate charts Φ: U 7→ V ⊆0 RK and parametrization charts ψ = φ−1: V 7→ U are
smooth maps.

Proposition:

A map Φ: M 7→ N is smooth if and only if for all charts (U, φ) for M and charts (U ′, φ′) containing the image
Φ(U) the map is smooth in the charts. That means:

Lemma:

Let Φ: M 7→ N , Ψ: N 7→ L be smooth maps, than Ψ ◦Φ: M 7→ L is smooth. The consequence is, theta X has
only a countable number of connected components.
Be τ ⊆ P (x), where τ is the set of all open sets of X. M ⊆ τ is an open covering, ∪N = X and N ∈ M .

8



1.3. SMOOTH FUNCTIONS AND MAPS IN MANIFOLDS

a.) U ∈ τ , φ: U '−→ V ⊆ Rk (open), where φ is a homoemorphism. Then (U, φ) is called a coordinate chart of
X.

b.) Let A = {(U, φ)|U ∈ M}, where M is a covering of X, be a system of coordinate charts. A is called an
atlas.

Definition:

A topological, Hausdorff, (countable basis of topology) space X, which admits an atlas A, is called a
topological manifold.

Example:

R, RN , intervals in R are submanifolds of Rn.

Example:

U X = R ∪ {0}, open sets in x

U all open sets of R

U {I = (I/{0} ∪ 0|I is open in R, 0 ∈ I}
X admits an atlas, but X is not Hausdorff.
Let X be a topological space (manifold) and A be an atlas for X. Then A is called smooth, if the coordinate
changes φ21: φ1(U1 ∩ U2) 7→ φ2(U1 ∩ U2) (φ21 = φ2 ◦ φ−1

1 ) are diffeomorphisms of open subsets in Rn for all
pairs of charts (U1, φ1), (U2, φ2) contained in A.
Be M a smooth manifold. We are looking at πE : E 7→ M , where E is a topological space and πE is continuous.
(E, πE) has the structure of a smooth vector bundle (of rang n), if the following conditions are all satisfied:

U There exists an open covering of M .

U For U ∈ A there exist bundle charts (also called local trivialisations) hU : π−1(n) 7→ U × Rm

hU (v) = (πE(v), h2
U (v)), h2

U : π−1(u) 7→ Rm

so that the change of trivialisation

hUj ◦ h−1
Ui

: Ui ∩ Uj × Rm 7→ Ui ∩ Uj × Rm

of the form hUj ◦ h−1
Ui

(x, v) = (x, gij(x)(v)), where gij : Uij 7→ GLm(R) is a smooth map. (Remark: The
gij are called transition functions of the bundle and hU are homeomorphisms.)

Definition:

(E, πE) with an atlas of bundle charts is called a smooth vector bundle. It is π−1
E (x) =: EX and the fiber over

x ∈ M is a vector space over the real numbers (such that if x ∈ U and hU is a local trivialisation, h2
U |EX :

EX 7→ Rm is an isomorphism of vector spaces.

Proposition:

Let πE : E 7→ M be a vector bundle, then E is a smooth manifold in a unique way, such that the projection
πE and all local trivialisations hU are smooth.

Proof:

1.) E is a Hausdorff space. So use, that the hU are homeomorphisms and also that M is Hausdorff. (easy
exercise)

2.) Construct a smooth structure on E, which satisfies the requirements. Let A be a covering for M with
associated local trivialisations hU for U ∈ A. By enlarging A if necessary, we can assume, that for alle
U ∈ A there exists a smooth chart φU : U 7→ RK (for the manifold M). Define charts φU : π−1(u) 7→
Rk × Rm, φ/v 7→ (φU (πE(v)), h2

U (v). So the (π−1(u), φU ) define a smooth atlas for E.

φUj
◦ φ

−1

Ui
: φUi(Ui ∩ Uj)(⊆0 Rk)× Rm 7→ φ(Uj ∩ Ui)(⊆0 Rk)× Rm, (y, v) 7→ (φUj ◦ φUi(y), gji(φ−1

Ui
(y)))

This is smooth, because the transition functions of the bundle are smooth. This implies also, that the
maps hU are smooth, in fact hU (v) = φ−1

U × idRm ◦ φU . Also πE is smooth. ¤
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KAPITEL 1. INTRODUCTION

Example:

The so-called trivial bundle is given by E := M × Rm 7→ M , πE(x, v) 7→ v.

Definition:

Let E 7→ M and E′ 7→ N be smooth vector bundles and f : M 7→ N be a smooth map. A smooth map F :
E 7→ E′ is called a vector bundle morphism (or just bundle map) over F , if the diagram

E //

πE

²²

E′

πE′

²²
M // N

is commutative and the maps Fx = F |Ex
: Ex 7→ E′

f(x) are linear for all x ∈ M .

Definition:

Be E and E′ bundles over M . Then a bundle map F : E 7→ E′ over f = idM is called a homomorphism
of bundles. E 7→ M and E′ 7→ M are called equivalent, if there exist homomorphisms F : E 7→ E′ and F ′:
E′ 7→ E, so that F ◦ F ′ = idE and F ′ ◦ F = idE . The bundle is called trivial, if it is equivalent to a bundle of
the form M × Rm.

Definition:

Let E
π−→ M be a vector bundle. Then a smooth map S: M 7→ E, which satisfies π ◦ s = idM is called a section

of E.

Example: Zero-section: S(x) = Ox ∈ Ex (Os in the vector space Ex)

1.4 The tangent bundle

TM =
•⋃

x∈M

TxM , where TxM is the tangent space of x ∈ M .

π : TM 7→ M, TxM 3 v 7→ π(x) = x

Proposition:

The tangent bundle has a natural structure of a smooth vector bundle, such that, if f : M 7→ N is a smooth
map, the differential df : TM 7→ TN (df |x: TxM 7→ Tf(x)N) is then a morphism of vector bundles.

Corollary:

TM has the structure of a smooth manifold and the differentials of smooth maps are smooth.

Proof:

LetA be a smooth atlas for M . Define hU : π−1(u) 7→ U×Rk, where k = dim(M) and (U, φ) ∈ A, π−1(u) ⊆ TM .

hU : v 7→ (π(v), dφ|π(v)(v))

The hU are bijections of π−1(u) onto U × Rk. Topology on TM : W ⊆ TM is open, if and only of hU (w) are
open in U × Rk for alle U belonging to the atlas A. This implies, that π is continuous. So we compute the
transition functions with respect to the {hU}:

hUj ◦ h−1
Ui

: (Ui ∩ Uj)× Rk 7→ (Ui ∩ Uj)× Rk, (x, v) 7→ (x, dφji|x(v))

10



1.5. MÖBIUS-BAND

where φji = φUj
◦ φ−1

Ui
is a coordinate change for the atlas A. This implies, that gji(x)(v) = dφji|x(v) are the

transition functions, which are linear (x fixed) and depend smoothly on x. So TM is a smooth vector bundle.
If f : M 7→ N , then we have following diagram:

TM
df //

πM

²²

TN

πN

²²
M

f
// N

which commutes and df |x: TxM 7→ TxN is linear. Also df is smooth with resprect to the bundle structures
on TM , TN !

1.5 Möbius-Band

We are looking a the Möbius-Band Möb = [0, 1] × R/ ∼, (0, v) ∼ (1,−v). The infinite cyclic group of diffeo-
morphisms generated by γ ∈ Diff(R×R) with γ(t, v) = (t + 1,−v) ist Γ = 〈γ〉. The quotient space R×R/Γ is
{[(t, v)]|(t, v) ∼ (t′, v′) if and only if there exists γ̃ ∈ Γ with γ̃(t, v) = (t′, v′)}. The quotient space is the same
thing as the Möbius band.

Lemma:

The space Möb is a smooth vector bundle over S1.

Proof:

For the proof we recall, that S1 = R/Z = {[t]|t ∼ t′ if and only if there exists n ∈ Z, so that t′ = n + t}. (This
is another way, to describe a circle.) There is a projection πMöb: Möb 7→ S1, [(t, v)] 7→ [t]. This is a well defined
continuous map.
To proof now, that Möb is a smooth vector bundle, we want to define smooth charts. U1 = {[t]|−1/2 < t < 1/2}
and U2 = {[t]|0 < t < 1} are open sets of the circle S1. U1 looks like a circle with two points removed and
U2 looks like a circle with the upper point removed. U1 ∩ U2 × R 7→ U1 ∩ U2 × R defines bundle charts φ1:
π−1
Möb(U1) 7→ U1×R, [t, v] 7→ (t, v) and φ2: φ−1

Möb(U2) 7→ U2×R, [t, v] 7→ (t, v). We now calculate the coordinate
change. Bundle charts for Möb: φ2 ◦ φ−1

1 : U1 ∩U2 ×R 7→ U1 ∩U2 ×R, (t, v) 7→ (t,−v). The coordinate change
in the second component is linear. ¤

Proposition:

The bundle πMöb: Möb 7→ S1 does not admit a non-vanishing section.

Proof:

R

f

²²

R× Rπ1
oo

fMöb

²²
S1 Möb

πMöboo

This is a commutative diagram. π1: R×R, (t, v) 7→ t (trivial bundle over R). The quotient map fMöb is a map
of bundles over f , which is an isomorphism on the fiber vector spaces. Given any section s: S1 7→ Möb, there
exists a section s̃: R 7→ R× R with s̃(t) = (t,X(t)), such that fMöbs̃(t) = s(t).

R es //

f

²²

R× R
fMöb

²²
S1

s
// Möb

is a commutative diagram. The map X is smooth, because s is smooth and it satisfies X(t + 1) = −X(t).
In particular, X: R 7→ R has a zero. And therefore s has a zero. For example, there exists x ∈ S1 with
s(x) = 0 ∈ Möbx. ¤

Proposition:

Let E 7→ S1 be a vector bundle of rank 1. Then E is isomorphic to the trivial bundle or to the bundle Möb.

11



KAPITEL 1. INTRODUCTION

Definition:

A manifold is called orientable, if it admits a smooth atlas, such that all coordinate changes have a positive
determinant for their differentials. A maximal atlas for M with this property is called an orientation of M .
(Recall: Φ: U 7→ V is a local diffeomorphism of a (connected) open subset of Rn to V ⊆ Rn. Then f(x) =
det(dΦ|x) is a (positive) or negative function, called the determinant of the differential.)

Exercise:

Show, that if M is orientable, then there exist precisely two orientations.

Lemma:

The Möbius band is not orientable. (Exercise series 6)

1.6 Operations on vector bundles

Given a vector bundle E over an manifold M , we can define natural bundles associated with it, for example
the dual bundle E∗ 7→ M . We can also look at ⊗pE 7→ M (p-th tensor power of E) or ΛpE 7→ M (p-th exterior
power of E). Given another bundle E′ 7→ M , we can form E ⊕ E′ 7→ M (direct sum), E ⊗ E′ 7→ M (tensor
product) and E ∧ E′ 7→ M (alternating or wedge product). The way to define these things is obvious.

1.6.1 Dual bundle of a vector bundle

If V is a real vector space, then V ∗ = {λ : V 7→ R|λ linear} is called the dual space of V . If V
ϕ−→ W is a

linear map, then ϕ∗: W ∗ 7→ V ∗ with ϕ∗(λ) = λ ◦ ϕ is the induced map. If ϕ: V 7→ W is an isomorphism, you
also get an isomorphism ϕ∗: V ∗ 7→ W ∗ with ϕ∗(λ) = λ ◦ ϕ−1. If E 7→ M is a vector bundle, then the dual
bundle is a bundle E∗ 7→ M , such that all fibers (E∗)x identify with (Ex)∗.
Now we are coming to the construction of the dual bundle E∗. Let A be an atlas of bundle charts for E. We
have a covering A of M and for all Ui ∈ A , φi: π−1

E (Ui) 7→ Ui × Rm with m = rank(E). We have coordinate
changes φj ◦ φ−1

1 : Ui ∩ Uj × Rm 7→ Ui ∩ Uj × Rm, (x, v) 7→ (x, gji(x)v), where gji: Ui ∩ Uj 7→ GL(m,R). We
define the bundle E∗ −−→

π∗E
M by declaring the coordinate changes for charts ψi: π∗E

−1(Ui) 7→ Ui × Rm to be

the maps ψj ◦ ψ−1
i : Ui ∩ Uj × Rm 7→ Ui ∩ Uj × Rm, (x, v) 7→ (x, ((gji(x))ᵀ)−1v). ¤

Recall, that the local trivializations φi, φi: π−1
E (Ui) 7→ Ui × Rm are of the form φi(v) = (x, L(x, v)), if

v ∈ Ex, and the map L(x) = L(x, •): Ex 7→ Rm is a linear isomorphism. Identifying Rm with its dual space
(x = (x1, . . . , xm) 7→ λx ∈ (Rm)∗, where λx(v) =

∑m
i=1 xivi) ψi(λx) = (x, L(x)∗(λx)) with λx ∈ E∗.

1.7 Differential forms

Be M a manifold and ΛkT ∗M := Altk(TM) the bundle of alternating k-dimensional maps on TM with
Altk(TM)x = Altk(TMx) and Altk(TM) 7→ M . Ωk(M) is the space of sections of Altk(TM). Furthermore we
are considering ω ∈ Ωk(TM) with ω: M 7→ Altk(TM), x 7→ ωx ∈ Altk(TMx). Ωk(M) is the space of smooth
differential k-forms on M .

Example:

An orientation form on M is a nowhere vanishing n-form ω ∈ Ωn(M), where n = dim(M). That is, ωx für
x ∈ M provides an orientation of the vector space TxM .

Example:

Another example are differential forms on Rn. Let U ⊆ Rn be an open subset. Every ω ∈ Ω1(U) may be
written in the form ω = f1 dx1 + f2 dx2 + . . . + fn dxn, where fi ∈ C∞(n) and dxi ∈ Ω1(U) are differentials of
the coordinate functions xi: U 7→ R, x = (x1, . . . , xn) 7→ xi.

12



1.8. PARTITION OF UNITY ON A SMOOTH MANIFOLD

Remark:

If f : M 7→ R is a smooth function, then the assignment v ∈ TxM 7→ df |x(v) ∈ Tf(x)R = R shows, that df is
identified with an element of Ω1(M).
Explicitly: dxi|x(v) = vi, v = (v1, . . . , vi, . . . , vn) ∈ Rn = TxU . Similarly we have for dxi ∧ . . . ∧ dxn ∈ Ωn(U):

(dx1 ∧ . . . ∧ dxn)(v1, v2, . . . , vn) := det(v1, v2, . . . , vn) with vi ∈ Rn = TxU

Every ω ∈ Ωn(U), where ω = f dx1∧ . . .∧dxn, f ∈ C∞(U) (because Altn(Rn) is one-dimensional and det 6= 0).

Remark on the general case:

Ωk(U) admits a basis dxi1 ∧ dxi2 ∧ . . . ∧ dxik , where i1 < i2 < . . . < ik over C∞(U).

Proposition:

Be M a smooth manifold. M is orientable if and only if there exists a smooth nowhere vanishing n-form
ω ∈ Ωn(M), where n = dim M .

Proof:

We have already proofed that a non-vanishing n-form implies and atlas (”⇐“).

1.8 Partition of unity on a smooth manifold

U Let A be a covering of M and B another covering. Then B is called subordinate to A, if for all U ∈ B
there exists a V ∈ A with U ⊆ V .

U A covering B is called locally finite, if for all x ∈ M there exists a neighborhood Ux 3 x, so that
{U ∈ B|U ∩ Ux 6= ∅} is a finite set.

Definition:

A partition of unity on M is a locally finite covering {Ui}i∈I , where I is an index set, together with smooth
functions αi: M 7→ R, αi ∈ C∞(M), i ∈ I with the property, that

1.) Supp(αi) = {x ∈ M |αi(x) 6= 0} ⊆ Ui

2.)
∑

i∈I

αi(x) = 1 ∀ x ∈ M (Remark: The sum is finite.)

Theorem:

Let A be a covering of M . Then there exists a partition of unity (Ui, αi)i∈I , such that the covering (Ui)i∈I is
subordinate to A (”subordinate partition of unity“).

Proof:

To prove the theorem, you need test functions (”bump“functions) on Rn with support contained in a neigh-
borhood of 0.

This will be done in the exercises.

13
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Important remark:

Given a local ”object“ on a set Ui, for example a local section S: Ui 7→ E, where E
π−→ M is a vector bundle,

we can define a global section of E, Ŝi: M 7→ E, by declaring Ŝi(x) = αi(x)Si(x) for x ∈ Ui and Ŝi(x) = 0 for
x ∈ M \Ui. (We want to use the abbreviation Ŝi = αiSi.) And thus, αiSi is a smooth section of E. Moreover,
having local data Si on all Ui, we patch them together by putting S =

∑
i∈I αiSi, which is a smooth section

of E.
We proof now: Let M be a smooth oriented manifold. Then M admits a nowhere vanishing smooth n-form
ω ∈ Ωn(M), n = dim M .

Proof:

Because M is oriented, we can choose a smooth oriented atlas (Ui, φi) for M . This means, that coordinate
changes φji satisfy det(dφji) > 0. So choose a partition of unity, which is subordinate to this atlas. By restricting
charts this partition of unity defines also an oriented atlas. Hence, we can assume from the beginning, that there
is a partition of unity (Ui, αi)i∈I . Look at the chart φi: Ui 7→ Rn. On Rn we have ω0 = dx1∧ . . .∧dxn ∈ Ωn(Rn)
(canonical non-vanishing form). So we can pull back to define φ∗i ω0: Ui 7→ Altn(TM), where φ∗i ω0 is a local
action on Mi.

(φ∗i ω0)|x(v1, . . . , vn) = ω0|φi(x)(dφi|x(v1), . . . , dφi|x(vn)) with x ∈ Ui and vi ∈ TxM

We can put

ω :=
∑

i∈I

αi(φ∗i ω0)

We claim, that this ω is an orientation form for M . Look at ω in a local chart (Uk, φk) and compute (φk)∗ω|Uk
∈

Ωn(φk(Uk)), where ωi = αiφ
∗
i ω0 = αi(φi)−1

∗ ω0 and α∗i (φk(x)) = α(x):

(φk)∗ω|Uk
=

∑

i∈I

(φk)∗ωi =
∑

i∈I

(φk)∗αiφ
∗
i ω0 =

∑

i∈I

(φk)∗(αi(φi)−1
∗ ω0) =

∑

i∈I

α∗i (φk ◦ φ−1
i )∗ω0 =

∑

i∈I

α∗i (φki)∗ω0 =

=
∑

i∈I

α∗i det(dφki)ω0 =

(∑

i∈I

α∗i det(dφki)

)
ω0 = µω0 with µ ∈ C∞, µ > 0

Because of det(φki) > 0 and αi > 0, µ is a positive function. So the ω doesn’t vanish in all local charts and
therefore ωx 6= 0 for all x ∈ M . So ω is an orientation form on M . ¤

1.9 Vector fields

Let’s just look on further examples of vector fields.

1.) Be M = U = R2 \ {0}. For x ∈ U we define X(x) = x; this vector field is called the position vector field.

14
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cx(t) = exp(t)x for t ∈ R is an integral curve for X. X is a complete vector field and the flow is given by
φt(x) = exp(t)x.

2.) Every vector field on Rn is written in the form X =
∑n

i=1 xi∂/(∂xi), where xi ∈ C∞(R) and ∂/(∂xi) are
the coordinate vector fields on Rn. The integral curves of ∂/(∂xi) are given by cx(t) = x + tei, where ei

is the standard coordinate vector. The flow of φt(x) of ∂/(∂xi) is equal to x + tei.

3.) Be GLn(R) = U
0⊆ Rn′<n. For ϕ ∈ Mat(n× n,R) we define a vector field Xϕ(g) = gϕ with g ∈ GLn(R)

(matrix product). So Xϕ ist a vector field of GLn(R). Recall: We have the exponential map

exp : Mat(n× n,R) 7→ GLn(R), ϕ 7→ exp(ϕ) =
∞∑

i=0

1
i!

ϕi

cg(t) = g(exp(tϕ)) is a curve ∈ GLn(R) with cg(0) = g. cg in an integral curve for the vector field Xϕ,
hence Xϕ is complete with the flow φt(g) = g · (exp(tϕ)).

Definition:

A smooth map R 7→ Diff(M) of the form t 7→ φt, φt ∈ Diff(M), where Diff(M) denotes the group of diffeo-
morphisms of M , is called a one parameter group of diffeomorphisms, if

i.) φ0 = idM

ii.) φs ◦ φt = φs+t ∀ s, t ∈ R

Remark:

We say, that φt is smooth, if R×M 7→ M , (t, x) 7→ φt(x) is smooth.
Let X be a smooth vector field on M , which is complete. The map Φ: R × M 7→ M , (t, x) 7→ cx(T ) with
cx(0) = 0 (which is an integral curve for X) is smooth. It is called the (global) flow of X. So a general
vector field admits only local flow maps near x, Φ: I × U 7→ M , where I =]a, b[ with a < 0 < b and U is a
neighbourhood of x ∈ M .

Proposition:

Let X be a complete vector field with global flow Φ. Then

i.) For t ∈ R fixed, x 7→ φt(x) := Φ(t, x) is a diffeomorphism of M .

ii.) The map t 7→ φt ∈ Diff(M) is a one parameter group (which is called the ”flow“ of X).

15
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Remark:

Let (φt)t∈R be a one parameter group of diffeomorphisms. Then we define a vector field on M by declaring

X(x) :=
∂

∂t

∣∣∣∣
t=0

φt(x)

Verify, that cx(t) = φt(x) is an integral curve for the vector field X with cx(0) = x. (Use, that φt is a
one-parameter group.)

Remark:

Concerning the third example, recall, that GLn(R) is a group and that multiplication and taking inverses in
GLn(R) is smooth. In particular, for g ∈ GLn(R), Rg: h 7→ h · g (right-multiplication) and Lg: h 7→ g · h (left-
multiplication) are smooth maps. Now, for a smooth homeomorphism R γ−→ GLn(R) (γ is called a one parameter
subgroup) we can define t 7→ Lγ(t), which is a one-parameter group of diffeomorphisms in Diff(GLn(R)).

Proof:

i.) x 7→ φt(x) is smooth. (That’s clear from the definition.) And so is the map x 7→ φ−t(x). Assuming namely
φs(φt(x)) = φs+t(x) we get φt ◦ φ−t = φ0 = idM = φ−t ◦ φt. This implies, that φt is a diffeomorphism
with a smooth inverse. Obviously, it is φ0 = idM , because φ0(x) = Φ(0, x) = cx(0) = x.

Picture of φt.

We move along the flow up to the time t.

ii.) Look at c(t) = φt ◦ φs(x), where s is fixed. By definition of φt, where c(t) = cφs(x)(t) is an integral curve
with c(0) = φs(x). Now look at c̃(t) = φt+s(x) = cx(t + s) with cx(0) = x, which is an integral curve for
X. Now we compute:

∂

∂t
c̃(t) =

∂

∂t
cx(t + s) = ċx(t + s) = X(cx(t + s)) = X(c̃(t))

So c̃ is an integral curve and c̃(0) = cx(s) = φs(x). By uniqueness of the locals, this implies c(t) = c̃(t)
for all t ∈ R. This is equivalent to equation (∗). ¤

Remark:

The proof shows, that a local flow for X, (t, x) 7→ φt(x) (with (t, x) ∈ I × U) has the property, that φt:
U 7→ φt(U) is a diffeomorphism and for all s, t ∈ I it is φs ◦ φt = φt+s (as defined).

1.9.1 Action of diffeomorphisms on vector fields

Be ψ ∈ Diff(M), where X is a vector field. Define ψ∗X (push-forward, image of X by ψ) by (ψ∗X)|ψ(x) :=
dψ|ψ−1(x)(X(ψ−1(x))). (This is again a smooth vector field, because the differential is smooth.) We define ψ∗X
(pull-back) by declaring ψ∗X := (ψ−1)∗X.

Lemma:

Let ψ, ψ1, ψ2 be ∈ Diff(M).

i.) (ψ1 ◦ ψ2)∗ = (ψ1)∗ ◦ (ψ2)∗ and (ψ1 ◦ ψ2)∗ = (ψ2)∗ ◦ (ψ1)∗

ii.) Let cx be an integral curve for X at x. Then Φ ◦ cx is an integral curve for Φ∗X at Φ(x).

iii.) If φt is the flow for X, then ψ ◦ φt ◦ ψ−1 is the flow for ψ∗X.
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Definition:

Let Φ ∈ Diff(M). Then a vector field is called invariant by φ, if Φ∗X = X.

Example:

In the third example the vector fields Xϕ are invariant by Φ = Lg for all g ∈ GLn(R).

Remark:

If X is invariant by ψ, then ψ ◦ φt ◦ ψ−1 = φt, so the flow commutes with ψ.

Proof of the lemma:

i.) Exercise!

ii.) c̃(t) := Φ ◦ cx(t), c̃(0) = Φ(x)

∂

∂t
c̃(t) = dΦ|cx(t) ◦ ċx(t) = dΦ|Φ−1◦ec(t)(X(cx(t))) = dΦ|Φ−1◦ec(t)(X(Φ−1c̃(t))) = (Φ)∗(X)(c̃(t))

This implies, that c̃(t) is an integral curve for Φ∗X.

iii.) Plug in the definition and use ii). Do it as an exercise, to get used to these calculations!
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Kapitel 2

Riemannian metrics

Definition:

Be M a differential manifold. If for all p ∈ M there exists a scalar product 〈, 〉p ≡ gp(, )in TpM , such that

”g varies smoothly with respect to p“ (∗, the dependence on p is ”differentiable‘), then (M, g) is called a
Riemannian manifold and g is called a Riemannian metric on M . (∗): Given local coordinates ϕ: U 7→ Rn,
q 7→ (x1(q), . . . , xn(q)), then the functions gij : U 7→ R given by gij(q) = 〈∂/∂xi|q, ∂/∂xj |q〉 for 1 ≤ i, j ≤ n
are C∞. In other words, the matrix (gij(q)), which represents gq in local coordinates with respect to the basis
∂/∂x1|q, . . ., ∂/∂xn|q of TqM has C∞ entries.

Examples:

1.) The first easy example is Rn with the standard scalar product 〈, 〉. So (Rn, 〈, 〉) is a Riemannian manifold.

2.) The second example is the hyperbolic space Hn with Hn = {x ∈ Rn|xn > 0}. So we have a diagonal
matrix representing gij :

gij(x) =
{ 1

(xn)2 für i = j

0 für i 6= j

3.) The immersion φ: M 7→ (N, 〈〈, 〉〉) introduces a Riemannian metric on M . This is just done by the
pull-back: 〈, 〉 := φ∗〈〈, 〉〉. Example for this are surfaces in R3 oder the standard sphere Sn ⊆ Rn+1.

4.) We want to consider Riemannian products. (M1, 〈, 〉(1)), (M2, 〈, 〉(2)〉 be Riemannian manifolds. So the
product manifold is given by:

T(p,q)(M1 ×M2) = TpM1 ⊕ TqM2, v = (v1, v2)

We define the projection by πi: M1×M2 7→ Mi, dπi|(p,q)(v) = vi for i = 1, 2. For u, v ∈ T(p,q)(M1×M2)
we get:

〈u, v〉(p,q) := 〈dπ1|(p,q)(u), dπ1|(p,q)(v)〉(1)p + 〈dπ2|(p,q)(u), dπ2|(p,q)(v)〉(2)q

Note, that TpM1 ⊥ TqM2 for TpM1 = dπ1|(p,q)(T (M1 ×M2)). Let us consider some examples:

a.) R× R = R2

b.) Are more interesting example is the flat torus. We take the product of two such Mi = S1 = {x ∈
R2|‖x‖ = 1}. What we then get, is T 2 = S1×S1. We endow every factor with a Riemannian metric
(for example the one induced for R2). We denote ∂/∂s1, ∂/∂s2 the unit tangent vector fields on S1.
Then we get:

T(p,q)T
2 = T(p,q)(S1 × S1) = R

∂

∂s1

∣∣∣∣
p

⊕ R ∂

∂s2

∣∣∣∣
q

So u ∈ T(p,q)T
2 can be written as

u = a1
∂

∂s1

∣∣∣∣
p

+ a2
∂

∂s2

∣∣∣∣
q

where a1, a2 ∈ R
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dπi|(p,q)(u) = ai
∂

∂si
for i = 1, 2

Now we can compute the coefficients of the matrix, which stands for the matric on the Torus T 2.
The basis for T(p,q)T

2 is the following:
{(

∂

∂s1

∣∣∣∣
p

, 0

)
,

(
0,

∂

∂s2

∣∣∣∣
q

)}

g11(p, q) =

∥∥∥∥∥dπ1

(
∂

∂s1

∣∣∣∣
p

, 0

)∥∥∥∥∥

2

+

∥∥∥∥∥dπ2

(
∂

∂s1

∣∣∣∣
p

, 0

)∥∥∥∥∥

2

︸ ︷︷ ︸
0∈TqM2

=

∥∥∥∥∥
∂

∂s1

∣∣∣∣
p

∥∥∥∥∥

2

+ 0 = 1

This is, because we have chosen a unique vector field.

g22(p, q) =

〈
dπ1

(
∂

∂s1

∣∣∣∣
p

, 0

)
,dπ1

(
0,

∂

∂s2

∣∣∣∣
q

)〉
+

〈
dπ2

(
∂

∂s1

∣∣∣∣
p

, 0

)
, dπ2

(
0,

∂

∂s2

∣∣∣∣
q

)〉
= 0

Finally, we get:

gij(p, q) =
(

1 0
0 1

)
= δij

So the two tangent spaces M1 and M2 are orthogonal. The metric is flat, so the torus T 2 is locally
isometric to R2. But this is not a global property, because the torus is compact and R2 not.

Definition:

Be (M, 〈, 〉) and (N, 〈〈, 〉〉) two manifolds. A local diffeomorphism φ: U 7→ V is called a local isometry if ∀
p ∈ U and ∀ u, v ∈ TpM it is 〈u, v〉 = 〈〈dφ|p(u), dφ|p(v)〉〉φ(p).

Remark:

If φ: R2 7→ S1×S1 = T 2, (s, t) 7→ (cos(s), sin(s))× (cos(t), sin(t)), then φ is a local isometry from (R2, 〈, 〉eucl〉)
to (T 2, 〈, 〉). But T 2 is not globally isometric to R2 (since T 2 is compact, but R2 is not).

2.1 Lengths of smooth curves

Let c: I 7→ (M, 〈, 〉) be a smooth curve. Then the tangent vector field of c is:

c′(t) ≡ dc

dt
(t) := dc|t

(
∂

∂t

)
∈ Tc(t)M and t ∈ I
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C ′ is a differentiable vector field along c in M . The length of c: [a, b] 7→ M is defined as:

L(c) :=

b∫

a

√〈
dc

dt
,
dc

dt

〉

c(t)

dt =

b∫

a

‖c′(t)‖c(t) dt

Remark:

1.) L(c) is independent of the parametrization (for example a property of the image c([a, b]) in M . So let’s
proof this. Be s: I = [a, b] 7→ J = [s(a), s(b)], t 7→ s(t) a diffeomorphism. We consider c: I 7→ M , c′:
J 7→ M , c′ = c ◦ s and use the chain rule:

L(c) =

b∫

a

∥∥∥∥
dc

dt

∥∥∥∥
c(t)

dt =

b∫

a

∥∥∥∥
dc′(s(t))

dt

∥∥∥∥ ·
∣∣∣∣
ds

dt

∣∣∣∣ dt =

s(b)∫

s(a)

∥∥∥∥
dc′

ds

∥∥∥∥
c′(s)

ds = L(c′)

2.) If φ: (M, 〈, 〉) 7→ (N, 〈〈, 〉〉) is a Riemannian isometry and c: I 7→ M a smooth curve of length l. Then
φ ◦ c is also a smooth curve in N of the same length l. This can be expressed by the property 〈u, v〉 =
〈dφ|p(u),dφ|p(v)〉φ(q).

3.) Every smooth curve c: I 7→ M with c′(t) 6= 0 for alle t ∈ I can be parametrized by arclength. That
means, that there exists c̃: J 7→ M with c = c̃ ◦ s, s: I 7→ J as above, such that ‖c̃′(s)‖ = 1 ∀ s ∈ J .
Let us consider the following example, namely (Sn, 〈, 〉ind) (Riemannian metric induced from Rn−1). A
great circle on Sn is an intersection of Sn with a two-dimensional subspace of Rn+1, say [u, v], where u,
v ∈ Rn+1 with ‖u‖ = ‖v‖ = 1.

G : [0, 2π] 7→ Sn, t 7→ cos(t) · u + sin(t) · v

G′(t) = − sin(t) · u + cos(t) · v

‖G′(t)‖2 = ‖−sin(t)·u+cos(t)·v‖2 u⊥v= 〈− sin(t)·u,− sin(t)·u〉+〈cos(t)·v, cos(t)·v〉 = sin2(t)+cos2(t) = 1

So we have a parametrization by arclength.

L(G|[0,α]) =

α∫

0

‖G′(t)‖dt = α

2.2 Existence of Riemannian metrics

Theorem 1:

On every n-dimensional differentiable manifold M , there exists a Riemannian metric g on M .

Proof:

We choose a smooth atlas A = {(U,ΦU )} and a subordinate partition of unity, (Mi, λi), where λi: M 7→ [0, 1]
is a smooth support λi ⊆ Ui and

∑
i λi = 1. On each Ui we define a chart Φi: Ui 7→ Rn, Φi = ΦU |Ui , where

Ui ⊆ U (for some U). Define g̃i = Φ∗i (〈, 〉), which is a Riemannian metric on Ui and also gi := λig̃i. (So gi is a
global object, namely a symmetric 2-form on M .) Furthermore, we define g :=

∑
i gi.

1.) This is well defined (clear!)

2.) It defines a symmetric bilinear form on each tangent space TxM by g|x(v, w) =
∑

i,λi(x)6=0 λi(x)g̃i(v, w).

3.) It is also positive definite, because g|x(v, v) =
∑

i,λi(x)6=0 λi(x)g̃i(v, v) > 0 ⇔ v 6= 0. (g̃i(v, v) > 0 ⇔ v 6= 0
and λi(x) > 0) ¤
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Examples:

If (M, g) is a Riemannian manifold and N ⊆ M a submanifold, then N has an induced Riemannian metric
h = g|N . This means TxN ⊆ TxM ∀ x ∈ N . Furthermore we put hx = g|x. In particular, if M ⊆ Rn is a
submanifold, then M has a Riemannian metric, which is defined by v, w ∈ TxM ⊆ Rm (which is a vector
subspace). We define the induced metric by g|x(v, w) = 〈v, w〉, where 〈, 〉 is the standard scalar product on
Rm.

Remark:

a.) Application: Theorem 1 follows by the Whitney embedding M ↪→ RN (∗) for arbitrary abstract M .

b.) The space of Riemannian metrics g on M is usually an infinite dimensional ”space“. (It’s not a vector
space!)

c.) Nash embedding theory: Let (M, g) be a Riemannian manifold, then (M, g) can be obtained by the
construction (∗). In other words: (M, g) is isometric to a submanifold of RN for some N À 0. This
submanifold is (M ′, h) with M ′ ⊆ RN and h = 〈〉|M ′ .

Definition:

Let (M, g) and (N, h) be two Riemannian manifolds and Φ: M 7→ N be a (local) diffeomorphism. Then Φ
is a (local) isometry, if and only if g = Φ∗h. (This means, that hΦ(x)(dΦ|x(v),dΦ|x(w)) = gx(v, w) for all
x ∈ M and v, w ∈ TxM .) The manifolds (M, g) and (N, h) are called isometric, if there is an isometry Φ:
(M, g) 7→ (N,h).

Remark:

Not every manifold admits a metric of signature (n, 1) (Lorentzian metric).

Example:

The S2 has no metric of signature (1, 1). (Hint: Proof, that a manifold with a metric of signature (n, 1) has a
non-vanishing vector field.)

Remark on (classical) notation:

(Rn, 〈, 〉) = (R2, g) with g =
∑

i

dx2
i

For R2 we have g = dx2 + dy2. dx is a differential form on R2 for example. So it is g(v, w) = dx(v) · dx(w) +
dy(v) · dy(w).

Example: Polar coordinates

We want to consider polar coordinates on R2.

Φ : R>0 × R 7→ R2, (r, θ) 7→ (r cos θ, r sin θ)

Φ is the polar coordinates map. What is h = Φ∗(g), where g = dx2 + dy2? So we have to coordinate fields
∂/∂r, ∂/∂θ on R>0 × R. We have to compute:

h

(
∂

∂r
,

∂

∂r

)
= g

(
∂

∂r
Φ,

∂

∂r
Φ

)
= g((cos θ, sin θ), (cos θ, sin θ)) = 1

h

(
∂

∂r
,

∂

∂θ

)
= g

(
∂

∂r
Φ,

∂

∂θ
Φ

)
= g((cos θ, sin θ), (−r sin θ, r cos θ)) = 0

h

(
∂

∂θ
,

∂

∂θ

)
= g

(
∂

∂θ
Φ,

∂

∂θ
Φ

)
= g((−r sin θ, r cos θ), (−r sin θ, r cos θ)) = r2

So we get h = dr2 + r2 dθ2. (This metric is isometric to the canonical metric.)
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Examples:

1.) Let b > 0 be any positive definite bilinear form on Rn. Then b defines a Riemannian metric (Rn, gb) on
Rn. But (Rn, gb1) and (Rn, gb2) are always isometric Riemannian manifolds.

2.) We consider the Torus Tn = Rn/Rn = S1×. . .×S1. π: Rn 7→ Tn is the natural projection: (v1, . . . , vn) 7→
(cos(v1), sin(v1), cos(v2), sin(v2), . . . , cos(vn), sin(vn)). Now let gb be a Riemannian metric on Rn, defined
as in ¬. π is a local diffeomorphism.

Lemma:

There exists a unique Riemannian metric hb on Tn, such that the map π is a local isometry.

Proof:

Take x ∈ Tn and x ∈ Rn, such that π(x) = x. Define hx(v, w) = yb(dπ|−1
x v, dπ|−1

x w) (∗) with v,
w ∈ TxTn. We have to show, that the definition of hx is independent of the choice of x. Therefore, let x
and y be, such that π(x) = π(y) = x. Then there exists a z ∈ Zn, such that y = x + z.

x //

dπ|x
²²

y

dπ|yÄÄ¡¡
¡¡

¡¡
¡

x

We note, that π ◦ tz = π, where tz : x 7→ x + z. So we get dπ|x = dπ|y ◦ dtz|x. This implies dπ−1
x (v) =

(dtz|x)−1 ◦ dπ−1
y (v), v = dπ−1

y (v). So (∗) is independent of x of y (the choice of x).

Remark:

The proof works, because the translations tz with z ∈ Zn, which cover the projection π: Rn 7→ Tn

(π ◦ tz = π) are isometries of (Rn, gb).

Question: Are the hb metrics on Tn all isometric? The answer is no in general. (See upcoming exercise!)

Be (M, g) a Riemannian manifold. So (M,dg) is a metric space, namely the distance function, which is com-
patible with the topology on M (metric space structure of a Riemannian manifold).

2.3 Riemannian conncetion on (M, g)

In Rn we can take the derivatives of curves and also on an arbitrary manifold. Furthermore we can take the

derivatives of vector fields X, Y ∈ Vect(U), U
0⊆ Rn. dX is well defined on U , because X: U 7→ Rn is a smooth

map. dY X is ∈ Vect(U) and it holds, that (dY X)|x = dX|x(Y (x)). If X is fixed, dX ist a tensor field on
U , namely dX ∈ Γ(U, T ∗U ⊗ TU). That is dX|x ∈ Hom(TxU, TxU) = Hom(Rn,Rn). Remember, that M is
a submanifold of Rn: X ∈ Vect(M), M ⊆ Rn, TxM ⊆ Rn ∀ x ∈ M . Then it holds X: M 7→ Rn, such that
X(x) ∈ TxM . If c: I 7→ M is a curve, we can consider:

∂

∂t

∣∣∣∣
t=0

X(c(t)) ∈ Rn

Let πx: Rn 7→ TxM be the orthogonal projection onto TxM ⊆ Rn. If c(0) = x, define for X ∈ Vect(M):

D
dt

∣∣∣∣
t=0

X(c(t)) = πx

(
∂

∂t

∣∣∣∣
t=0

X(c(t))
)
∈ TxM

Example:

We want to consider M = S2 ⊆ R3 and we define c(t) = (cos(t), sin(t), 0) ∈ S2. The tangent is ċ(t) =
(− sin(t), cos(t)) ∈ Tcos(t),sin(t),0S

2. The second derivative is:

c̈(t) =
∂

∂t
ċ(t) = −(cos(t), sin(t), 0)

So D/dtċ(t) = 0, because ċ(t) · c̈(t) = 0.
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KAPITEL 2. RIEMANNIAN METRICS

Given two vector fields X, Y on the submanifold M ⊆ Rn, x ∈ M we define

(∇XY )|X :=
D
dt

∣∣∣∣
t=0

Y (c(t))

where c: I 7→ M is a curve with c(0) = X and ċ(0) = X(x).

Lemma:

∇XY is a smooth vector field on M .

Proof:

Extend on a neighborhood U
0⊆ Rn, x ∈ U the vector field X|U∩M , Y |U∩M to vector fields X̃, Ỹ : U 7→ Rn,

such that X̃|U∩M = X|U∩M and Ỹ |U∩M = Y |U∩M . Given these extensions it follows, that

∂

∂t

∣∣∣∣
t=0

Y (c(t)) = d eX(x)Ỹ = (d eX Ỹ )|x

Thus, (∇XY )|U (y) = πy(d eX Ỹ |y). This shows then, that ∇XY is a smooth vector field on U ∩M . This shows,
that ∇XY ∈ Vect(M). ¤

2.3.1 Remarks on orthogonal projections

Let V be a k-dimensional subspace of Rn. π: Rn 7→ Rn is called projection onto V , if

i.) Image(π) = π(Rn) = V

ii.) π2 = π

The projection π is called orthogonal, if the kernel of π is orthogonal to the image of π (= V ). This property
is equivalent to πᵀ = π, where πᵀ is the transpose of π.

〈π(v), w〉 = 〈v, πᵀ(w)〉 = 〈v, π(w)〉 = 0 where w ∈ Kern(π)

There exists a unique orthogonal projection onto V .

Lemma:

Let ϕ: Rk 7→ Rn be a projective linear map of rank k. Then the map π = ϕ(ϕᵀϕ)−1ϕᵀ is the orthogonal
projection of Rn onto V = Im(ϕ).
The lemma shows, that the πy: Rn 7→ TyM depend smoothly on y. (Think about it!) The map ∇: Vect(M)×
Vect(M) 7→ Vect(M) is called the induced connection on the submanifold M ⊆ Rn.

Proposition:

The map ∇ satisfies

i.) ∇ is linear with respect to scalar multiplication with real numbers and addition of vector fields in both
variables.

ii.) For all f ∈ C∞(M) it holds, that ∇XfY = (LXf)Y + f∇XY (product rule).

iii.) For all f ∈ C∞(M) it is ∇fXY = f∇XY (C∞-linearity in the second variable).

Definition:

Let M be a manifold, then ∇: Vect(M) × Vect(M) 7→ Vect(M), (X,Y ) 7→ ∇XY , which satisfies (i), (ii) and
(iii) of the proposition, is called a (linear) connection on M . (∇XY is also called the ”covariant“ derivative of
X and Y with respect to ∇.)
We will see, that on each Riemannian manifold (M, g) there exists a uniquely defined canonical connection
∇ = ∇g, which is called the Levi-Civita connection of g.
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2.4. PARALLEL TRANSPORT

2.3.2 Properties of connections

Definition:

A linear operator P : Vect(M) 7→ Vect(M) is called a local operator, if for all vector fields Y1, Y2 ∈ Vect(M)
and for all open subsets U ⊆ M the condition Y1|U = Y2|U implies, that P (Y1)|U = P (Y2)|U .

Examples of local operators:

For X ∈ Vect(M) the Lie derivative PX := LX with Y 7→ LXY = [X, Y ] is a local operator.

Lemma:

Let ∇ be a connection on M . Then Y 7→ ∇XY and X 7→ ∇XY are local operators on M .

Proof:

∇X : Y 7→ ∇XY is a local operator. Let Y1 and Y2 be vector fields on M , which satisfy Y1|U = Y2|U and let
x ∈ U . Choose a test function f ∈ C∞(M) with support contained in U and also f ≡ 1 on U1 ⊆ U , x ∈ U1.
It follows, that fY1 = fY2 and ∇XfY1 = ∇XfY2. Compute at x as follows: (∇XfY1)|x = f∇XY1|x = and
f∇XY2|x = ∇XfY2|x. (This is a result of the product rule.) Finally we have f∇XY1|x = f∇XY2|x.

2.4 Parallel transport

We are looking at a manifold M with ∇ as a connection on M . γ: I 7→ M , γ(0) = x be a curve. If v ∈ TxM ,
there exists a unique vector field X ∈ Vect(γ), X(0) = v with ∇tX = 0. Pt: TxM 7→ Tγ(t)M , v ∈ TxM 7→ X(t)
is then called parallel transport.

Proposition:

i.) The map Pt: TxM 7→ Tγ(t)M is a linear isomorphism of tangent spaces.

ii.) If ∇ is the linear connection for a Riemannian metric g on M , then Pt: (TxM, gx) 7→ Tγ(t), gγ(t) is an
isometry of metric linear spaces.

Proof:

i.) Pt is a linear map. Let v1, v2 ∈ TxM and a,b ∈ R. Furthermore let Xv1 , Xv2 be ∈ Vect(γ), ∇tXv1 =
∇tXv2 = 0 with Xv1(0) = v1 and Yv2(0) = v2. Then we note:

∇t(aXv1 + bXv2) = a∇tXv1 + b∇tXv2 = 0 and (aXv1 + bXv2)(0) = av1 + bv2

This includes the following:

Pt(av1 + bv2) = aXv1(t) + bXv2(t) = aPt(v1) + bPt(v2)

So Pt is linear. To show, that Pt is an isomorphism, let us consider the curve γ−(s) = γ(t − s) with
γ−(0) = x1 = γ(t) and γ−(t) = γ(0) = x.

If X is a vector field along γ, X−(s) = X(t − s) defines a vector field along γ. Suppose, X is parallel
along γ, so ∇tX = 0. Then it follows, that X− is parallel γ−. (along γ: 0 = ∇tX = ∇γ̇X with
X ∈ Vect(M) and along γ−: ∇sX = ∇γ̇−(s)X = ∇−γ̇(t−s)X = 0) This shows, that the parallel transport
of w = X(t) = Pt(v) along γ− is X−(t) = X(0) = v. That is, if P−t denotes parallel transport along γ−:
Tγ(t)M 7→ TxM , then Pt ◦ P−t = idTxM . It also follows, that Ot ◦ P−t = idTγ(t)M , what shows us, that P
is bijective.

ii.) It is enough to proof, the following. Let X1 and X2 be parallel along γ. Then the function g(X1(t), X2(t))
is constant. For this we are allowed to compute

∂

∂t
g(X1(t), X2(t)) = g((∇tX1)(t), X2(t)) + g(X1(t), (∇tX2)(t)) = 0

because ∇ is the Levi-Civita connection on M and the vector fields X1 and X2 are parallel. ¤
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Application of (ii) would be the propagation of orthonormal frames along γ. Let x = γ(0) and ei be an
orthonormal basis of (TxM, gx). Then the parallel transported vector fields Ei(t), Ei(0) = ei, ∇tEi = 0 for an
orthonormal basis at (Tγ(t)M, gγ(t)) (orthonormal frame).

2.5 Geodesics

Definition:

We consider ∇ to be a connection on M . A curve γ: I 7→ M is called a geodetic for ∇, if ∇tγ̇ = 0.

Remark:

This is an analogue of the straight lines in Rn (curves, where the second derivatives vanished).
In local coordinates: Let xi: U 7→ Rn be a local coordinate system and γi = xi ◦ γ. Then we can compute:

∇tγ̇ =
∑

l


γ̈l +

l∑

i,j

Γ l
ij γ̇iγ̇j


 ∂

∂xl

So γ is a geodesic, if and only if the equation

γ̈l +
l∑

i,j

Γ l
ij γ̇iγ̇j = 0

holds for all l = 1, . . ., n. This is a second order differential equation. As a consequence we note the following
proposition:

Proposition:

Let x ∈ M , v ∈ TxM . Then there exists an interval I =] − ε, ε[ and a curve γ: I 7→ M with γv(0) = x,
γ̇v(0) = v, ∇tγ = 0.

Lemma:

Let γ: I 7→ M be a geodesic and f : I 7→ J a representation and γ̃: J 7→ M , γ̃(s) = γ(f−1(s)). Then γ̃ is a
geodesic, if and only if f is an affine reparametrization, f(t) = at + b with a, b ∈ R and a 6= 0. (γ of course
should be not constant.)

Proof:

We compute

∇s
˙̃γ =

∂

∂s
f−1γ̇ + f−1∇tγ̇ =

(
∂

∂s
f−1

)
γ̇

∇s
˙̃γ = 0 includes ∂

∂sf−1)γ̇ = 0. ¤

Lemma:

Let x ∈ M . Then there exists a neighbourhood U of 0x ∈ TxM , U ⊆ TM and an interval I =] − ε, ε[, such
that the map U × I 7→ M , (v, t) 7→ γv(t) is well defined and smooth.

Proof:

That is the smooth dependence of solutions on the initial value. ¤
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Proposition:

Given x ∈ TxM , there exists a neighbourhood U ⊆ TM with 0x ∈ U , such that the map exp: v 7→ γv(1) is
well defined and smooth. (The map exp: U 7→ M is called the exponential map.)
A consequence of the proposition is the following. Let x ∈ M , then there exists U ⊂ TxM with 0x ∈ U , such
that expx = exp |U : U 7→ M , v 7→ expx(v) = γv(1) is well defined an smooth. (expx is called the exponential
map at x.)

Remark:

Note, that for v ∈ TxM the curves expx(tv) = γ(t) are geodesics. For this note, that γsv(t) = γv(st), because
γ(t) := γv(st) is a geodesic by our previous lemma. γ(0) = γv(0) = x and γ̇(0) = sγ̇v(0) = sv implies
γ(t) = γsv(t).
Now we compute expx(tv) = γtv(1) = γv(t). Hence, the curve t 7→ expx(tv) is the geodesic starting at x with
tangent v.

Lemma:

The exponential map expx: U 7→ M has the derivative d expx |0: T0TxM = TxM 7→ TxM and d expx |0 =
idTxM .

Proof:

Let v ∈ T0TxM = TxM .

d expx |0(v) =
∂

∂t

∣∣∣∣
t=0

expx(tv) =
∂

∂t

∣∣∣∣
t=0

γv(t) = γ̇v(0) = v ¤

The consequence of this lemma is, that there exists a neighbourhood U1 ⊆ TxM , 0x ∈ Ux, such that expx:
U1 7→ M is a diffeomorphism of U1 onto an open subset of M (exponential coordinates in (M, ∇)).

2.6 Gauß-Lemma

Let p ∈ M , expp: B(z, 0) 7→ M with B(ε, 0) ⊂ TpM . For v 6= 0 and w ∈ TpM it holds, that g(d expp |v(v), d exp |p(w)) =
〈v, w〉, where 〈v, w〉 = g|p(v, w).

Proposition:

Let q ∈ U = expp(B(ε, 0)). Then there exists a vector v ∈ B(ε, 0) and a geodesic γv starting at p, such that
γv(1) = q and γv is the unique ”distance“ minimizing curve joining p and q. (In particular, L(γv|[0,1]) = d(p, q).)

Proof:

We let c: I = [0, 1] 7→ M be a curve in M , such that c(0) = p and c(1) = q. If c(t) is ∈ U , we can define ċ‖(t) as
follows: Since by assumption, expp: Bε(0) 7→ U is a diffeomorphism, ċ(t) = d exp |v(w) for a unique v ∈ Bε(0)
and w ∈ TpM , into its tangent direction w = αv+w1, where w1 is orthogonal to v. Define ċ(t)‖ := d exp |v(αv).
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We want to show, that L(c) ≥ L(γ).

L(γ) =

1∫

0

‖γ̇(t)‖ =

1∫

0

|v|

Suppose c remains in U , then we compute the length of the curve:

L(c) =

1∫

0

g(ċ(t), ċ(t))
1
2 ≥

1∫

0

g(ċ(t)‖, ċ(t)‖)
1
2

c(t) = expp(c(t)) with c : I 7→ Bε(0) and c(t) = r(t)v + w1

The Gauss lemma now says:

1∫

0

g(ċ(t)‖, ċ(t)‖)
1
2 =

1∫

0

|ṙ(t)| ≥
1∫

0

ṙ(t) = r(1)− r(0) = |v| = L(γ) ¤

Corollary:

Let (M, g) be a Riemannian manifold and p, q ∈ M . Furthermore be α the shortest curve between p and q.
Then α is the representation for a geodesic.

Proof:

By the Gauss Lemma we know, that the geodesics are locally the only distance minimizing curves. It follows
immediately, that α is the reparametrization of a broken geodesic, so α looks like something like that:

So we have to check, what happens near the neighbourhood of such a ”break point“. If a broken geodesic is
distance minimizing, then it is a geodesic. We take a geodesically convex neighbourhood of p1. (Convention: If
expp: Bε(0) 7→ M is a diffeomorphism with image U , then U will be called a local neighbourhood of p. We
call U a convex normal neighbourhood, if it is a normal neighbourhood for all points q ∈ U .) The broken
segment joining p2 and q2 is distance minimizing. Because q2 is in a normal neighbourhood of p2, this curve
must be a geodesic. This implies, that α cannot be broken at p1. (Heuristically: We could smoothen it up and
make it shorter!) ¤

Summary:

Let (M, g) be a Riemannian manifold.

i.) Locally, geodesics are distance minimizing curves.

ii.) Every distance realizing curve α: I 7→ M with L(α) = d(p, q), α(0) = p and α(1) = q ”is“ a geodesic.

Definition:

Every geodesic γ with γ(0) = p, γ̇(0) = v ∈ TpM has a maximal interval of definition, such that γ: Imax 7→ M
is defined. We call γ complete, if Imax = R. That is, γ can be extended to infinity (for all times).
We call (M, g) complete at p ∈ M , if all geodesics starting at p are complete. (M, g) is called geodesically
complete, if it is complete at all points p ∈ M .

Remark:

(M, g) with its distance d is a metric space. (M, g) is called (metrically) complete, if the metric d is complete.

2.7 The Hopf Rinow theorem

Corollary:

Let (M, g) be complete. Then very two points p and a can be joined by a distance minimizing geodesic.
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2.8. RIEMANNIAN CURVATURE

Key Lemma:

Let p ∈ M be a point, such that M is geodesically complete at p. Then for all q ∈ M there exists a distance
realizing geodesic γ joining p and q.

Theorem:

Let (M, g) be a Riemannian manifold. Then the following are equivalent:

i.) M is geodesically complete.

i’.) M is geodesically complete for one p ∈ M .

ii.) M is metrically complete.

iii.) Every bounded and closed subset of M is compact.

(This result does not hold for non-Riemannian manifolds!)

Proof:

We now proof the Hopf Rinow theorem using the key lemma. Let us start with (ii) ⇒ (i). Let γ: I = [0, ε[ be
a geodesic. Therefore consider a sequence ti 7→ ε. It follows, that γ(ti) are Cauchy sequences with respect to d,
because d(γ(ti), γ(tj)) ≤ |ti− tj |. We may assume by (ii), that the γ(ti) converge to some point q in M . Choose
convex normal coordinates around q, there exist a δ, such that U = expq(Bδ(0)). Now for γ(ti) ∈ Bδ(0) it
holds, that |ti−ε| < δ/2. We see, that there is an extension of our geodesic beyond ε, because in our convex
neighbourhood U , there exists a δ, such that every geodesic segment is defined at least up to
length δ! Hence, γ can be extended to I = [0, ε + δ/2(.

Corollary:

If M is compact, then (M, g) is complete.

Proof:

This follows from (iii) of the Hopf Rinow theorem, because M is Hausdorff.

2.8 Riemannian Curvature

Be ∇ be a connection on M :

R∇(X,Y )Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ
(
= (∇[X,Y ] − [∇X ,∇Y ])Z

)

We have already seen, that R∇ defines a (1, 3)-tensor field, also called R∇ on M . This tensor field is called
the curvature tensor of ∇. First, let us look at the interpretation of the curvature definition. We define the
second covariant derivative of Z ∈ Vect(M) as follows: For Z ∈ Vect(M) ∇Z, X 7→ ∇XZ is a (1,1)-tensor
field.

∇Y (∇•Z)(X)∇Y∇XZ −∇∇Y XZ =: ∇2
Y,XZ

This is a (1,2)-tensor for Z fixed.

Proposition:

It holds R∇(X,Y )Z = ∇2
Y,XZ −∇2

X,Y Z for a torsion-free ∇.

Proof:

∇Y X −∇XY = −[X, Y ] ¤

Example:

Be (Rn, D) and D the canonical connection on Rn, RD = 0. The connection D is flat.
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2.8.1 Defined curvature notions

Define Ric∇(X, Y ) 7→ Tr(Z 7→ R∇(X,Z)Y ). Ric∇ defines a tensor of type (0,2). That is, Ric∇ is a bilinear
form on each tangent space, called the Ricci-tensor of ∇ (Ricci-curvature).

Remark:

R∇(X, Y ): Z 7→ R∇(X, Y )Z is a linear operator of the tangent space(s)s, namely the curvature operator. It
holds R∇(X, Y ) = −R∇(Y,X). So the curvature is a 2-form with values in the bundle End(TM) = TM∗⊗TM .

2.8.2 Symmetries of the curvature (Bianchi identities)

Proposition:

Let ∇ be a torsion free connection.

i.) First Bianchi identity: R(X, Y )Z + R(Z, X)Y + R(Y, Z)X = 0

So the sum over all cyclic permutations of the variables X, Y and Z vanishes.

ii.) Second Bianchi identity:

Let ∇R be the covariant derivative of R. (∇R is a (1,4) tensor.) It holds, that (C∇R)(X, Y, Z, U) = 0,
where C denotes the sum ober all cyclic permutations.

(For non-torsion-free connections the torsion appears in the upper formulas.)

Proof:

We will only proof the first identity. Since R∇ is a tensor, it is enough, to proof (i) for vector fields, which
commute. For such vector fields R∇(X, Y )Z = ∇Y∇XZ − ∇X∇Y Z. We want to calculate now the cyclic
permutations of these R∇:

CR∇(X,Y )Z = C∇Y∇XZ − C∇X∇Y Z = C∇Z∇XY − C∇Z∇Y X = C∇Z [X, Y ] = 0 ¤
Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita connection of (M, g). We define a (0,4) tensor
on M , namely R(X,Y, Z,W ) := g(R∇(X,Y )Z, W ) with R := R∇. The (1,3)-tensor R is called the (Riemann)
curvature tensor of (M, g).

Proposition:

i.) It holds g(R(X, Y )Z, W ) = −g(Z, R(X, Y )W ).

ii.) Furthermore we have the symmetry g(R(X, Y )Z,W ) = g(R(Z, W )X,Y ).

Proof:

We only want to proof (i). Use, that all brackets are zero. We use, that ∇ is a metric connection:

R(x, y, z, w) = g(∇Y∇XZ −∇X∇Y Z, W ) =
= LY g(∇XZ, W )− g(∇XZ,∇Y W )− LXg(∇Y Z,W ) + g(∇Y Z,∇XW ) =
= L[Y,X]g(Z, W )︸ ︷︷ ︸

=0

−g(Z,R(X, Y )W )

¤

2.8.3 Interpretation of the symmetries

The operator R(X, Y ) is skew with respect to the metric g by (i). Summarizing (iii) and (iv) we may interpret
R(x, y, z, w) as a symmetric form on TM ∧ TM , because R(x ∧ y, z ∧ w) := R(x, y, z, w).

Proposition:

The Ricci tensor Ric = Ric∇ is a symmetric bilinear form for a Riemannian connection ∇. Hence, it defines a
symmetric linear operator R̂ic by the formula Ric(X, Y ) = g(R̂ic(X), Y ). R̂ic is called the Ricci operator.
The trace of R̂ic is called the scalar curvature of (M, g).

s : M 7→ R, s(p) = Trace(R̂ic|p), p ∈ M
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2.8. RIEMANNIAN CURVATURE

2.8.4 The sectional curvature of a Riemannian manifold

Be K: Grassmannian bundle of 2-planes on M 7→ R for every p ∈ M and every two-dimensional subspace
π ⊆ TpM . We define a number Kp(π) = R, which is called the sectional curvature of the plane π. Given w,
w ∈ TpM , which span a plane π ⊂ TpM . Define Q(v, w) = 〈v, v〉〈w,w〉 − 〈v, w〉2 with 〈, 〉 = g|TpM . Q(v, w) is
a positive number. Furthermore, Q is a quadratic form on TpM ∧ TpM . We define:

K(v, w) :=
R(v, w, v, w)

Q(v, w)
=

R(v ∧ w, v ∧ w)
Q(v ∧ w)

The number K(v, w) only depends on the plane π, because if π = Span(v, w) = Span(v2, w2), there exists
α ∈ R, α 6= 0 with v ∧ w = αv2 ∧ w2.

Proposition:

The sectional curvature determines the curvature tensor R.

Proof:

R is a symmetric form on the space TxM∧TxM . Let F be the corresponding quadratic form. By the polarization
is determined by F . Actually, we have, that K(v ∧ w) = F (v ∧ w)/Q(v ∧ w). ¤

Examples:

1.) For n = 1, M is a one-dimensional manifold, R ≡ 0. (Heuristically: You can embed a line in curved way,
but when you are inside it, you cannot see the curvature.)

2.) For n = 2, the sectional curvature is a function K: M 7→ R, p 7→ Kp(TpM) = K(v, w), where v, w is a
basis of TpM .

3.) For n = 3 the Ricci tensor determines the curvature tensor.

Definition:

We say, that (M, g) has constant curvature, if the function K is constant. All sectional curvatures have the
same value.

Exercise:

If M has constant curvature, it holds R(X, Y )Z = C(g(X, Z)Y − g(Y, Z)X) with the constant C.

Example:

1.) (Sn, can) is of constant curvature C = 1.

2.) (H2, 1/g〈, 〉) is of constant curvature C = −1.
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