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Chapter 1

The Fluid-Gravity Correspondence

1.1 References

• 0712.2456

• 0803.2526

• 0809.4272

• review: 0905.4352

1.2 Outline

• Motivation

• Elements of fluid dynamics

• Conformal fluids

• Fluid dynamics from gravity

• Properties of gravity solutions

• Extensions: charged fluids, forced fluids, non-relativistic fluids

1.3 Motivation

The claim we want to make is that fluid dynamics is the effective long-wavelength description of an interacting
quantum field theory (in local equilibrium). One could use this, for example, to study the physics of QCD just
above deconfinement.
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CHAPTER 1. THE FLUID-GRAVITY CORRESPONDENCE

One can now ask, what kinds of properties this state of matter has. The quark gluon plasma behaves as a
nearly ideal fluid; it has almost no dissipation. If perturbation theory was applicable in this regime, one would
find a strongly dissipating fluid.

Shear viscosity
entropy density

=
η

S
≈ (0, 1− 0, 2)

~
kB

. (1.1)

This answer comes from a fit to a hydrodynamical system, since we do not understand the microscopics, in
this case QCD. This value is far below the values for any other fluid. Liquid helium comes close to it, but it
is still a factor of ten below this value. From perturbation theory it follows that

η

S
=

1
λ2 ln(λ)

. (1.2)

For λ 7→ 0, where the theory is dissipation-free, the shear viscosity also vanishes, but this behavior cannot be
seen in perturbation theory. From black hole physics using the AdS-CFT correspondence one obtains

η

S
=
~

kB

1
4π

≈ 0, 08
~

kB
. (1.3)

This calculation was done in a field theory with infinitely large coupling. The calculation was done by evaluating
the following correlation function

η

S
= lim

ω 7→0

1
ω
〈Tµν(ω)Tµ′ν′(0)〉 . (1.4)

The bound

η

S
≥ ~

kB

1
4π

, (1.5)

has been proposed. Another calculation on DB-branes reveals

E

ESB
=

3
4

, (1.6)

at strong coupling.
Something we do not unterstand is

• turbulence

• regularity of Navier-Stokes evolution (usually for non-relativistic in-compressible systems)

Systems of interest are relativistic and compressible ones.

1.4 Gravity motivations

One important question is the following: What is the set of regular black hole solutions in d > 4? In four
dimensions this is the Kerr-Newman black hole (S2 topology horizon), which is completely specified by mass
M , angular momentum J and charge Q. However, in five dimensions this is not true.

1.5 Summary of the story

1.) We want to consider fluid dynamics as an effective field theory. In order to do this one has to identify

– the variables (thermodynamic)

– and the operators at given order.

We boil this down to determining a finite set of transport coefficients (η, ζ, etc.), which characterize
the fluid. The language to describe the fluid is just statistical mechanics. The transport coefficients
distinguish one fluid from another one. On the other hand we are interested in causality issues in
relativistic fluids and we want to go beyond first order fluid dynamics.
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1.5. SUMMARY OF THE STORY

2.) We want to apply this to gravity using the AdS/CFT correspondence. We will see that Einstein’s
equations will lead us to the fluid equations by considering inhomogeneous dynamical asymptotically
AdS black holes. We will be interested in the entropy current for fluids from gravitational perspective.
As a next step, generalizations will come into play, namely charged or forced fluids. Finally we want to
compare known stationary solutions in AdS.

Consider Scherk-Schwarz compactifications of N = 4 SYM on R2,1 × S1 with anti-periodic boundary
conditions for fermions: The ground state of the theory is a AdS5 soliton:

ds2 = r2

(
1− r4

+

r4

)
dχ2 +

d2

r2
(
1− r4

+
r4

) + r2(−dt2 + dx2
1 + dx2

2) , (1.7)

ds2
Schw = −r2

(
1− r4

+

r4

)
dt2 +

dr2

r2
(
1− r4

+
r4

) + r2(dχ2 + dx2
1 + dx2

2) . (1.8)
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Chapter 2

Fluid dynamics

Fluid dynamics is an effective field theory which is valid at long wavelengths. The length scale in the system
is the mean free path lmfp. The system be in thermal equilibrium.

We want to use extensive thermodynamical variables ε, qI , s etc. and intensive variables T , µI , P etc.

Ξ = Tr {exp (−β(H + µIqI))} . (2.1)

Hydrodynamics is valid, if the scales of variation of the thermodynamic variables L is much bigger than lmfp.
Hydrodynamics is conservative with respect to the dynamics of the system; hence, the dynamical equations
are simply conservation laws.

∇µTµν = 0 , ∇µJµ
I = 0 , (2.2)

which means that the energy-momentum tensor and the charged current are conserved. From that, the non-
relativistic continuity equation follows:

∂%

∂t
+ ∇ · j = 0 . (2.3)

The system is completely specified by giving Tµν , Jµ,I as functions of hydrodynamic variables There are both
extensive and intensive hydrodynamic variables:

i.) Extensive variables: ε, qI

ii.) (or) Intensive variables: T , µI , P

They are not independent; the equation of state relates intensive and extensive variables. What we furthermore
need, are energy and charge fluxes εi, qi,I , the velocity uµ. We will use the metric gµν such that gµνuµuν = −1.
For an ideal fluid one has

(Tµν)ideal = εuµuν + P (gµν + uµuν) , (Jµ,I)ideal = qIuµ . (2.4)

The equations are written in terms of extensive variables, since the pressure P can be expressed by the energy
ε by using the equation of state. We define a spatial projector by Pµν = gµν + uµuν , for which it holds that

Pµνuµ = 0 , Pµ%P%ν = Pµ
ν , Pµ

µ = d− 1 . (2.5)

Then, we can write

(Tµν)ideal = εuµuν + PPµν . (2.6)
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CHAPTER 2. FLUID DYNAMICS

∇µTµν = 0 are d equations for d variables. In particular, an ideal fluid does not dissipate, because there is no
friction. The entropy current measures entropy production: Jµ

S = suµ, whereas s is the entropy density. Since
there is no friction, the entropy current is conserved: ∇µJµ

S = 0.
We account for dissipation like follows:

Tµν = (Tµν)ideal + Πµν , Jµ
I = (Jµ

I )ideal + γµ
I , (2.7)

whereas Πµν and γµ
I are the dissipative parts. The phenomenological method to determine Πµν , γµ

I is to use the
first law and to require that there exists an entropy current Jµ

S with ∇µJµ
S ≥ 0. As mentioned, hydrodynamics

is valid, if L À lmfp. This implies that one can use an effective field theory to organize terms appearing in
Tµν and Jµ

I . Look at a domain of local equilibrium at temperature T with ∂T/T ¿ 1. lmfp will be a function
of coupling constants divided by temperature: lmfp ∼ f(coupling)/T . Because of that we can think of fluid
dynamics as a gradient expansion, because derivatives with respect to the equilibrium value shall be small.
Πµν and γµ

I should be built out of derivatives of (ε, P, qI) and uµ. This is completely analogous to constructing
infrared effective field theories (for example the chiral Lagrangian für QCD).

• At zeroth order, which is equivalent to an ideal fluid, there are no derivatives.

• At first order one should allow all terms (subject to symmetry) with one derivative (∇µuν ,∇µε,∇µP ,etc.)

At any given order one is free to use the lower order equations of motion.

In order to define the velocity field for dissipative fluids we need a definition. We will use the Landau frame,
where in the local inertial frame we measure the total energy density.

Πµνuµ = 0 , γµ
I uµ = 0 . (2.8)

We would like to decompose velocity gradients:

∇µuν = −aµuν + σµν +
1

d− 1
θPµν + ωµν , (2.9a)

with

θ = ∇µuµ = Pµν∇µuν , aµ = uν∇νuµ , (2.9b)

σµν = ∇(µuν) + u(µaν) − 1
d− 1

θPµν = PµαP να∇(αuβ) −
1

d− 1
θPµν , (2.9c)

and

ωµν = −(∇[µuν] + u[µaν]) = −PµαP νβ∇[αuβ] . (2.9d)

The first order contributions to Πµν come from σµν and θ. There are no contributions from ∇µε or ∇µP for
conservation equations at zeroth order give:

uν(∇µTµν)ideal = (ε + P )∇µuµ + uµ∇µε = 0 , (2.10a)

Pνα(∇µTµν)ideal = P µ
α ∇µP + (ε + P )Pναuµ∇µuν = 0 . (2.10b)

One can use the decomposition

Πµν
(1) = −2ησµν − ζθPµν , (2.11)

where η is the shear viscosity and ζ the bulk viscosity. Furthermore

γµ
I = −κ̃IJPµν∇νgJ − γ̃IP

µν∇µε− vI l
µ , (2.12)

whereas lµ = ε µ
αβγ uα∇βuγ and hence the third term exists only in four dimensions. The transport coefficient

vI is related to the global anomaly coefficient (Sont Surowka). This above equation can also be written in the
form

γµ
I = −κIJPµν∇ν

(µJ

T

)
− γIP

µν∇νT − vI l
µ , (2.13)

with parameters κIJ , γI and vI . At first order the entropy current is given by

∇µJµ
S =

2η

T
σαβσαβ . (2.14)
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2.1. CAUSALITY IN RELATIVISTIC HYDRODYNAMICS

2.1 Causality in relativistic hydrodynamics

Let us look at the stress tensor:

Tµν = εuµuν + (ε + P )Pµν − 2ησµν − ζθPµν . (2.15)

The equations ∇µTµν = 0 are parabolic in all frames.

2.1.1 Isreal-Muller-Stewart formalism

Let us look at diffusion to have a simple example. The continuity equation is given by

∂%

∂t
+ ∇ · j = 0 . (2.16)

Furthermore, we have Fick’s law j = −D∇%. Plugging this into the continuity equation leads to

∂%

∂t
= −D∇2% = 0 , (2.17)

which is a parabolic equation. Modify Fick’s law to make the current relax exponentially:

j = −D∇%− τπ
∂j
∂t
⇒ ∂%

∂t
−D∇2%− τπ∇ · (∂tj) ≈ ∂%

∂t
−D∇2% + τπ

∂2%

∂t2
= 0 , (2.18)

whereas we now have a hyperbolic system. The signal propagation has now a bounded velocity

vprop =
√

D

τπ
. (2.19)
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Chapter 3

Conformal fluids

Consider a Weyl rescaling of background metric

gµν = exp(2φ)g̃µν . (3.1)

Normalization of velocity field implies uµ = exp(−φ)ũµ. The conformal weight of any operator Q = exp(−ωφ)Q̃
ist ω. Conformal invariance implies the tracelessness of the stress tensor: T µ

µ = 0. Furthermore, it follows
that Tµν = exp(−(d + 2)φ)T̃µν . From T µ

µ = 0 ((Tµν)ideal = εuµuν + PPµν) the equations of state follows:
ε = (d− 1)P . Find the weights of thermodynamic variables: T = exp(−φ)T̃ . Using the equation of state and
the Stefan-Boltzmann scaling law ε ∼ T d one obtains

(Tµν)ideal = αT d(duµuν + gµν) . (3.2)

θ scales inhomogeneously

θ = exp(−φ)(θ̃ + (d− 1)ũµ∇̃µφ) , (3.3)

and

σµν = exp(−3φ)σ̃µν , lµ = exp(−2φ)l̃µ . (3.4)

A conformal fluid has ζ = 0:

Tµν = αT d(gµν + duµuν)− 2ησµν , Jµ
I = qIu

µ − κIJPµν∇ν

(µJ

T

)
, (3.5)

with η being of the general form η ∼ T d−1f(µI/T ). Anyway, the Gibbs-Duhem relation holds:

P + ε = sT + qIµI . (3.6)

We will now go to the second order, from which two derivative terms will emerge. A conformal invariant fluid
on a manifold Bd does not case about metric data, but rather on the conformal structure of Bd. Denote the
conformal class (Bd, C) (with some structure C) and define a derivation on Bd. Define a Weyl connection
∇Weyl. For each representative g ∈ C there exists a connection A such that

∇Weyl
α gµν = 2Aαgµν . (3.7)

Define a new derivative operator

D = ∇Weyl + ωA . (3.8)

Let us consider a tensor Qµ...
ν... with weight ω under Weyl rescalings: Qµ...

ν... = exp(−ωφ)Q̃µ...
ν....

DλQ̃µ...
ν... = ∇λQ̃µ...

ν... + ωAλQ̃µ...
ν... + (gλαA µ − δµ

λAα − δµ
αAλ)Q̃α...

λ...

− (gλνA α − δα
λAν − δα

νAλ)Q̃µ...
α... . (3.9)

It holds that

DλQ̃µ...
ν... = exp(−ωφ)D̃λQ̃µ...

ν... , (3.10)
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CHAPTER 3. CONFORMAL FLUIDS

and the question now arises, what A is. D is metric compatible: Dλgµν = 0. We are going to fix Aα for fluids
using the velocity field uµ. The Weyl covariant derivative of uµ is required to be transverse and traceless:

uαDαuµ = 0 , Dαuα = 0 ⇒ Aµ = uλ∇λuµ − 1
d− 1

uµ∇λuλ = aµ − 1
d− 1

θuµ . (3.11)

At first order in the derivatives one can write σµν = D(µuν) and ωµν = −D [µuν]. They are homogeneous with
ω = 3. Furthermore DµTµν = ∇µTµν = 0. Let us go to the second order in derivatives:

DµDνuλ = Dµσλ
ν + Dµω λ

ν , ω = 1 , (3.12)

Dλσµν , Dλωµν , σ µ
α σαν , ωµ ωνα , σµ

αωνα , ω = −1 . (3.13)

At second order we can have contributions from the background curvature. The only two derivative operator
built from curvature tensors, which is homogeneous under Weyl rescalings is Cµν%σuµu%.

• First order: σµν

• Second order: τµν
1 = 2uαDασµν , τµν

2 = Cµ ν
α βuαuβ , τµν

3 = 4σα〈µσν〉,

τµν
4 = 2σα〈µω

ν〉
α, τµν

5 = ωα〈µω
ν〉

α

Πµν = −2ησµν + τπητµν
1 + κτµν

2 + λ1τ
µν
3 + λ2τ

µν
4 + λ3τ

µν
5 . (3.14)

For N = 4 SYM-theory one obtains:

η =
N2

8π
(πT )3 ,

η

S
=

1
4π

, α =
π2N2

8
. (3.15)

Now to the transport coefficients:

τπ =
2− ln(2)

2πT
, κ =

η

πT
, λ1 =

η

2πT
, λ2 =

η ln(2)
πT

, λ3 = 0 . (3.16)

Consider now thermal N = 4 SYM at λ = ∞ and N 7→ ∞. According to AdS/CFT this theory is dual
to a planar Schwarzschild-AdS5 black hole at Hawking temperature T . Study the linearized gravitational
perturbation. This has a spectrum of gravity quasi-normal modes with dispersion relations:

• Sound channel: ω = vsk − ik2Γs + . . . with vs = 1/
√

d− 1 (= 1/
√

3 for N = 4)

Herein, Γs = η/(ε + P ). The mode propagates with speed of sound vs and as it propagates, it loses
energy to the medium.

• Shear channel: ω = −iDk2 + . . .

3.1 AdS/CFT correspondence

String theory on asymptotic AdS spacetimes is dual to a non-gravitational quantum field theory (gauge theory).

Strings on AdS5 × S5 dual= N = 4 SYM SU(N) , (3.17)

Strings on AdS5 × T 1,1 dual= N = 1 SCFT SU(N)× SU(N) . (3.18)

An infinite class of N = 1 SCFTs obtained from D3-branes at the tip of a CY3 cone with base of the cone
being a 5-dimensional Sasaki-Einstein manifold AdS5 ×X5. The nice thing about AdS/CFT is that there is a
universal sector, which describes the dynamics of Einstein’s equations with negative cosmological constant. At
strong coupling λ in the planar limit (N 7→ ∞), one can replace string theory by classical supergravity. The
strong coupling controls the spectrum of string theory and N controls the string interactions. String states
(oscillators) has energy ∼ λ1/4. Hence, in the limit λ 7→ ∞ and N 7→ ∞ classical supergravity on AdS5 ×X5

can be done. Since X5 is compact this can be reduced to supergravity with Kalusza-Klein modes on AdS5,
whose low-energy effective action is given by

Ssugra =
1

16πG5

∫ √−g(R− 2Λ + . . .) . (3.19)
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3.1. ADS/CFT CORRESPONDENCE

The decoupled sector of the theory is Einstein-Hilbert plus cosmological constant. The dual field theory
statement is that the decoupled sector corresponds to the stress tensor dynamics. The distinction between
different choices of X5 is buried in G5.

1
16πG5

=
Vol(X5)
16πG10

, G10 = (2π)7l8p = (2π)7l8sg
2
s , (3.20)

1
16πG5

= cSCFT . (3.21)

Hence, cN=4 ∝ N2.
For calculational purposes it is useful not allow the AdS spacetime to have its boundary at infinity, but to

cut it off by a finite radius.

For this cut-off surface we can calculate the extrinsic curvature for the surface at r = Λc:

Kµν = gµ%∇%nν , (3.22)

where nµ is a unit normal vector. The boundary stress tensor is given by

Tµν = lim
Λc 7→∞

Λd−2
c

16πG
(d+1)
N

[
Kµν −Kgµν − (d− 1)gµν − 1

d− 2

(
gRµν − 1

2
gRgµν

)]
. (3.23)

The second term comes from the Hawking term

Sbody =
1

16πG
(d+1)
N

∫
ddx

√−g(2K + . . .) . (3.24)

The last terms come from counter-terms from the boundary metric. For a planar AdSd+1 black hole one
obtains the stress tensor for an ideal fluid:

Tµν =
(πT )d

16πG
(d+1)
N

(ηµν + duµuν) , (3.25)

where ua = (∂/∂t)a is the time-like Killing field. The planar black hole can be extended to a d-parameter
family of solutions. One just has to boost the solution in the spatial directions of Rd−1,1, which from the
gravity point of view are just coordinate transformations.

ds2 =
dr2

r2
(
1− rd

+
rd

) + r2

[
−

(
1− rd

+

rd

)
uµuν + Pµν

]
dxµ dxν , Pµν = ηµν + uµuν . (3.26)

By promoting r+ = r+(x), uµ = uµ(x), and Pµν = Pµν(x) and plugging into the Einstein equations. However,
they are not solved, unless u and r+ are numbers. However, we expect that this approximates a single domain
of a locally equilibrium fluid. This is the case, if the derivatives ∂µr+, ∂µuν are sufficiently small. The question
remains how to put together all solutions of the form, namely how to patch together pieces of black holes
to make a new solution. That is a problem, since gravity is intrinsically non-linear. We want to develop a
perturbation technique which allows us to find an approximate solution in some perturbative expansion. The
perturbation theory for black holes will work as long as ε = ∂uµ/T ¿ 1 and ∂ log(T )/T ¿ 1. ε will be the
parameter of the perturbative expansion. A problem of perturbation theory is to choose a appropriate starting
point. The planar black hole written in Schwarzschild coordinates (t, r,x) is a bad choice for perturbation
theory. The reason is that these coordinates are ill-behaved on the horizon. Therefore, we will switch to a
different set of coordinates.
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CHAPTER 3. CONFORMAL FLUIDS

We will use ingoing Eddington-Finkelstein coordinates. The planar black hole without boosting is then given
by:

ds2 = 2 dv dr − r2

(
1− rd

+

rd

)
dr2 + r2 dx2 . (3.27)

The Killing field (∂/∂t)a is just vanishing on the future horizon. The boosted solution will look as follows:

ds2 = −2uµ dxµ dr − r2f

(
r

r+

)
uµuν dxµ dxν + r2Pµν dxµ dxν , f(r) = 1− 1

rd
. (3.28)

Call G(0) the metric (3.28) with r+(x), uµ(x), whereas x = {v,x}. G(0) has an ε-expansion itself. Consider
the full metric GAB to be

GAB =
∞∑

k=0

εkG
(k)
AB . (3.29)

In particular, G
(1)
AB is a correction term needed such that G

(0)
AB+G

(1)
AB solves RAB+dGAB = 0 at order ε. We will

be solving Einstein’s equations in a derivative expansion in coordinates x, which parameterize the boundary,
but exactly in r. Suppose we have solved for GAB to O(εk). To get a solution at O(εk+1), we just have to
solve a set of equations

H (G(k+1)
AB (r(0)

+ , u(0)
µ )) = Sk+1 . (3.30)

H must be an ordinary differential operator involving r. Einstein’s equations have become linear ordinary
differential equations in one variable, but with complicated sources. If r+ and uµ are constants one has a large
symmetry group consisting of v- and x-translations. These symmetries can be used to simplify the equations
further.
AdS/CFT has a universal sub-sector, which is pure gravity in AdS.

Sbulk =
1

16πGdt′
N

∫
dxdt′

√
−G(R− 2Λ) . (3.31)

GAB is the bulk metric whose boundary contains gµν (fluid dynamics background) in its conformal class. The
equations of motion are RAB + dGAB = 0. A simple solution is AdSd+1, the vacuum of dual CFT.
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3.1. ADS/CFT CORRESPONDENCE

Another interesting solution is the Schwarzschuld-AdS black hole:

ds2 = −f(r) dt2 +
dr2

f(r)
+ r2 dΩ2

d−1 , (3.32)

whereas dΩ2
d−1 is the round metric on Sd−1 and

f(r) = r2 + 1− rd−2
+

rd−2
(1 + r2

+) . (3.33)

r = r+ is the location of the black hole horizon. For r+ ≥ 1 this solution gives the thermal density matrix of
field theory at T = TH with Hawking temperature TH .

TH =
f ′(r+)

4π
. (3.34)

The global SAdS is dual to thermal CFT on R× Sd−1. Penrose diagram:

To do fluid dynamics, we require the curvature scales to slowly vary: r+/ld+1 À 1. The temperature gradients
shall be small compared to the local temperature. We could instead start with AdSd+1 with Rd−1,1 boundary
and introduce boundary curvature as a part of the hydrodynamic gradient expansion. r+ À 1 leads to the
planar AdSd−1 black hole.

ds2 = −r2

(
1− rd

+

rd

)
dt2 +

dr2

r2
(
1− rd

+
rd

) + r2 dx2
d−1 , (3.35)

where r2 dx2
d−1 is the Euclidian line element square on Rd−1. The horizon is non-compact and the spatial

geometry is Rd−1. The planar AdS black hole is dual to thermal CFT on Rd−1,1 with T = dr+/(4π). Using the
planar black hole as global equation solution we want to systematically derive hydrodynamics. The bulk gravity
requires boundary terms in order for the classical variation problem to be well-posed: S = Sbulk + Sbody(gµν).
Sbody(gµν) is a functional of the boundary metric.
There are (d + 1)(d + 2)/2 components of Einstein’s equations.

i.) Constraint equations:

These are basically obtained by dotting the Einstein’s equations with the unit normal vector nA of the
AdS boundary.

EAB = RAB + dGAB , EM = EMNnN . (3.36)

The constraint equations will not play a role in determining G
(k+1)
AB . They constrain the allowed form of

r+(x) and uµ(x). These functions have to satisfy the hydrodynamical conservation

Eµ = ∇ν(T ν
µ )(k) = 0 . (3.37)

(T ν
µ )(k) is the stress tensor, evaluated at the k-th order of derivatives.

ii.) Dynamical equations:

These determine G
(k+1)
AB .
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CHAPTER 3. CONFORMAL FLUIDS

To solve the system explicitly, it is useful to use symmetries. For constant r+ and uµ we have an SO(d − 1)
spatial rotation symmetry (can be seen in a local inertial frame). Decompose G

(k)
AB into SO(d− 1) irreducible

representations:

scalars G
(k+1)
vv G

(k+1)
vr G

(k+1)
rr

∑d−1
k=1 G

(k+1)
ii

vectors G
(k+1)
iv G

(k+1)
ir

tensors (symmetric and traceless) G
(k+1)
ij

By a certain gauge choice we set G
(k)
rr = G

(k)
ir = 0. The dynamical equations become a decoupled set of linear

ordinary differential equations. In the vector sector the dynamical equation is just

Hd−1O =
d
dr

(
1

rd−1

d
dr
O

)
. (3.38)

So we have to solve

d
dr

(
1

rd−1

d
dr

G
(k+1)
iv

)
= Sk+1(r, x) . (3.39)

In the tensor sector one has similarly

H d(d+1)
2

O =
d
dr

[
rd+1f(r)

dO
dr

]
, f(r) = 1− 1

rd
. (3.40)

The boundary conditions are:

• solution should be normalizable (fall off fast enough as r 7→ ∞),

• regular at r = r+.

GAB dxA dxB = −2S(r, x)uµ(x) dxµ dr + χµν(r, x) dxµ dxν , (3.41)

with

S(r, x) = 1 + ε(0) + ε2(•) + . . . , χµν(r, x) = Pµν − f

(
r

r+

)
uµuν + #σµν + . . . . (3.42)

From GAB we can extract Tµν and find

Tµν = αT d(duµuν + ηµν)− 2ησµν , α =
πd

16πG
(d+1)
N

, η =
(πT )d−1

16G
(d+1)
N

. (3.43)

GAB delivers gravity solutions dual to fluid flow.
The question arises: What is the geometry dual to fluids? The geometries are dynamical inhomogeneous black
hole spacetimes with a regular event horizon.

xµ = const. are radially ingoing null geodesics. The event horizon can be determined explicitly (in fact
algebraically) from GAB. The event horizon is the boundary of the past/of the future null infinity. Assuming
the fluid flow settles down at late times in the hydrodynamic limit (gradient expansion) we can perturbatively
determine the horizon location. Let us assume that the event horizon is a dimension 1 null hypersurface

r − rH = SH = 0 . (3.44)
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3.1. ADS/CFT CORRESPONDENCE

rH(x) = r+(x) +
∞∑

k=0

εkr(k)(x) . (3.45)

Find r(k)(x) using the fact that the surface is null:

G(AB)(∂ASH)(∂BSH) = 0 . (3.46)

As an example consider the following geometry in four dimensions:

ds2 = −
(

1− 2m(r)
r

)
dv2 + 2 dv dr + r2 dΩ2 . (3.47)

The event horizon r = rH(v) is a null-surface. Hence, it satisfies

r(v) = 2m(v) + 2r(v)
dr(v)
dv

. (3.48)

To make contact with hydrodynamics we assume that m is slowly varying:

ṁ(v) ∼ O(ε) , mm̈ ∼ O(ε2) , etc. (3.49)

lim
v 7→∞

m(v) = m0 . (3.50)

Let

r(v) = 2m(v) +
∑

k

εkr(k)(v) , r(1) = 8mṁ , r(2) = 64mm̈ + 32mṁ2 . (3.51)

The event horizon delivers and entropy current for the field theory.

a is a d − 1 form and is pulled back along radially ingoing null-geodesics. ∂(Area of event horizon)≥ 0. The
area theorem guarantees that ∇µJµ

S ≥ 0. It is possible to write down this current explicitly for fluid dynamics
variables:

Jµ
S = Suµ +

S

r2
+

uµ
(
A1σαβσαβ + A2ωαβωαβ + A3R

)
+

S

r2
+

(
B1Dλσµλ + B2Dλωµλ

)
. (3.52)

B1 + 2A3 = 0 , A1 =
2
d2

(d + 2)− Ã1 , A2 = − 1
2d

, B1 =
2

d(d− 2)
, B2 =

1
d− 2

. (3.53)

∇µJµ
S ≥ 0 , ∇µJµ

S =
2η

T

(
σµν +

1
2

[
d

4π
(1 + Aid)− τπ

]
uαDασµν

)2

+ . . . . (3.54)
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